‘S*.:' '\r
NACA TN:1932

83¢t3

ol "]“p -

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

'TECHNICAL NOTE 1932

TWO-DIMENSIONAI: COMPRESSIBLE FLOW IN CENTRIFUGAL
COMPRESSORS WITH STRAIGHT BLADES
By John D. Stanitz and Gaylord O. Ellis

Lewis Flight Propulsion Laboratory
Cleveland, Ohio .

Washington
August 1949

AFMEC

mAIPIANL [ TRTARY
‘;\; ;IT-:'\_"lti- i::-:“l.l'.li .

KFL 2811

IImHIiISES"HJU

"-’?!7' f;”/"’,



TECH LIBRARY KAFB, NM

R ER

0065350
HATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1932

TWO-DIMENSIONAL COMPRESSIHELE FLOW IN
CENTRIFUGAL COMPRESSORS WITH STRATGHT BLADES
By John D. Stanitz and Geylord O. Ellis

SUMMARY

Six mumerioel exsmples are presented for steady, two-dimensional,
coampressible, nonviscous flow in centrifugal compressors with straight
blades, the center lines of whioh generate a right oircular cone
when roteted ebout the axis of the compressor. A seventh example is
presented for incompressible flow. The solutlons were obtained in a
region of the compressors, including the impellexr tip, that was oon-
sidered to be unaffected by diffuser vanes or by the inlet configur-

- abion of the impellers. ZEach solution applies to rediel- and oconical-
flov compressors with various cone engles but with the same included
pessage engle between blades. (The solutions also apply to radial-
and oonical-flow turbines with the rotation and flow dlireotion
reversed,) The effects of variations in the following paremeters
were investigated: (1) flow rate, (2) 1ller-tip speed, (3) vari-
ation of pessege height with redius, and 4) number of blades. The
mmerical results are presented in plots of the streamlines, constent
Mach number lines, and constant pressure-ratio lines.

Correlation equetions are developed whereby the flow conditioms
in eny impeller with streight blades can be determined (in the
region investigated by this anslysis) for all operating conditions.
As examples of the: informetion provided by the correlation equetlons,
the velooities along the blade surfaces are presented for a wide
range of impeller-tip Mach mmmber, flow oocefficlent, and included

passage angle,

INTRODUCTION

At the present time, the design of centrifugal ocompressors 1s
en art, rether than e sclence. Little detalled kmowledge
of flow corditions within the compressor is avallable upon which to
base & rational design. If these flow conditions oould be determineéd,
design methods might be developed for centrifugal compressors with
higher eeroiynamioc efficienoy anmd better over-all performence. For
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2 NACA TN 1932

example, the compressor effiociency would be improved if favoreble
veloocity distributions (from the standpoint of boundary-layer
growth and geparation) oould be obtained along the flow surfaces

by proper design of the compressor.

For a given set of design and operating paremeters, the veloc-
ities and pressures within the compressor depend on the three-
dimensional flow path and on the fluid properties (compressibility
and viscosity). A oomplete analysis of the flow must include all
these faoctors. If flow conditions are essentially uniform in one
direction, however, the flow is adequately represented by a two-
dimensional analysis in whioh the fluid is oonsidered invisoid but
oompressible. Viscosity of the fluid is unimportant except within
the boundary layer along the flow surfaces and this boundary layer
is thin provided favoreble velooity distributions exist within the
ocompresgsor., On the other hand, compressibillity of the fluid is
important in centrifugal ocompressors because the large pressure
ratios per stage result in density changes that affect the fluid
veloocities, streamlines, and so forth,

In a previous report (reference 1), a general method of anal-
ysis was developed for steady, two-dimensional, ocmpressible flow
through conloal=flow ccmpressors and turbines in which the center
line of the paseage generates a right clrocular oone about the axis
of rotation. The radial-discharge oentr:lh?l ocapresscr is a
special case in wvhich the cone angle is 180%.

In the present report, these analytical methods are applied
to investigate the flow conditions within a certain region of redial-
or oonical-flow campressors and turbines with straight blades. The
region investigated includes the impeller tip and is that regiomn
which was oonsidered to be unaffeoted by the inlet oonfiguretion of
the impeller and by the diffuser vemes; that 1s, the impeller inlet
and the diffuser venes, if any, must be far enough removed from the
region investigated not to affect the flow appreciably in that
region. Straight blades were selected because they were considered
the most representative blade shape now in use for aircraft centri-

fugal compressors.

The purpose of this analysis was to determine the effect of
operating and design variables (impeller~tip speed, compressor
flow rate, variation of passage height with redius, and included
pessage angle) on flow oonditions within the reglon investigated.
From this information, limitations can be placed upon the operating
and design veriables if certain flow conditions are desired within
these regions. Yor example, if, from boundary=-layer considerations,



L¥TT

NACA TR 1932 3

maximim rates of deceleration of the relative velocity are specified
along the flow surfaces, then the results of this analyeis cen be
used to determine limiting values of impeller-tip speed, compressor
flow rate, variation of passage height with redius, and included
passage angle,

The theoretical investigation presented herein was oonducted
at the NACA Iewls laboratory.

METHOD OF SOLUTION
Equations

A general analysis was developed in reference 1 for steady, two-
dimensional, oompressible flow in centrifugal compressors with arbi-
trary blade shapes and arbltrary variations in the passage height.

The analysis 1s limited to radial- and conical-flow compressors In
which the center line of the passage generates a right olrcular come
when rotated about the axis of the compressor (fig. 1). The two-
dimensional flow patterm is considered to lie on the surface of this
cne. The final equations, developed in reference 1, are presented in
this seotion together with a brief discussion of the coordinate system
and the assumptions and limitations of the anmalysis.

Coordinate system. - A de view of the conio surface gen-
erated by the passage center line (fig. 1) is shown in figure 2.
The dimensionless conic ooordinates of a fluld particle on the conilc
surface ere R and 6. (All symbols are defined in appendix A.)
The oconlo-redius ratic R is defined by

Z
13-rT (1)

where r 1is the conic redius (distance along conic element from
apex of oone) and the subseript T refers to the impeller tip.

The coordinate system (R, 6) rotates with the angular veloolty

® of the impeller., The passage-height ratio H 1in the direction
normel to the oonic surface (fig. 2) is a oonbtimuous function of the
ocnic~redius ratio R.

E = 2 = £(R) (2)

hT
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where h is the passage height at any conioc-radius ratio R.

Assumptions and limitations. ~ This analysis assumes that flow
conditions are uniform across the passage normal to the oconic sur-

face; that is, the flow varies only along the conic surface, In
oxrder to satisfy this assumption, it is necessary that: (1) the
@adient of h with respect to r be small; and (2) the cone angle
¢ be sufficiently large. The allowable variation in o from 180°
will depend on the ratio h/r and on the desired accuracy. Xor .
the hypothetical limiting osse in which h/» approaches zero every-
vhere along the conlc surface, the analysis is accurate for all
values of a.

Yelocity-ratio components. - The fluid particle on the developed
conic surface in figure 2 has a relative tangential velooity retio

U and a redial (along oonlc element) velooity reatio V. These
veloocity ratios are defined by

v-—v- (Sb)

where

u tangential oamponent of velooity relative to impeller (positive
in direction of rotation)

v redisl (along oonio element) component of velocity
o local speed of Sound

Subscript:

o absolute inlet stagnation oonditiom.

Btream funotion }I{. - A dimensionless stream function V
satiasfies the contimity equetion if defined as

v_p
- R povm (4a)

L¥TT
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and
%l-;ﬂun (4v) .
o

vhere p 1is the weight density.

The stream function V{ 1s constent along the blade surfece.

V andl O are assigned values of zero along the driving face

the blade (WMWHW&NO‘Gi&#Wi@),M
value of along the treiling face of the blade (the blade

e opposed to the direction of rotetion) is glven by

-

‘Vt = cP9-|I-, (5)

B8 H

:

i

W
P = PoProo (8)

ap = Béyrphe (7)

i

¢ ocompressor flow coefficient
W oompressor flow rate

e flov aves (normal %o conic surfece)
B mmber of passages (or blades)
Subaoript:

% treiling face of blale (blade surface opposed to direction of
rotation)

Differential eguation. - The differential equation for the stream-
fanotion distribution in ocmpressors with straight blades (1ying along
conic elements) is glven by equetion (38) of reference 1 in terms of
trensformed coordinates [ eand 1.
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3(1oge £)
- - - P
%%m{}n"g)é]'?'*a—nf-&—ﬁ-
L
ay X% 5 .2V (8)
S~ o P
vhere the impeller-tip Mach munber My is defined as
. o

[
The treansformed coordinates { and 1, which are related to R
and 6 by

i = plogy R (10a)

n =P8 (10b)

have been introduced because they result in parallel blades in the
transforped plane, Such a transformation is desireble becanse it
simplifies the solntion of the differential equation by relaxation
nethods .

In equation (8), the blade=height ratio H is assumed to vary
with the conio-redius ratio according to
H=R" (11)

vhere = 1s an arbitrery exponent. (For m = 0 the dlade height
remains constant and for m = -1,0 the flow area remains constant.)

In order to solve equation (8), it is necessary to know the
density ratio, which is related to the impeller-tip Mach number
and the relative velooity retio Q by (equation (11), reference 1)

1
2
£ e {14 T [(m)® - aa]}’ | (22)

1147
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where 7 1s the ratlo of speoilfio heats, where
Q2 =02 + V2 (13)

and vhere the sbsolute whirl of the fluid aheed of the impeller is
essumed to be zero. The velooity Q (mlti‘?lied. by o/po) 18 in
turn given by equations (4), (20), (11), and (13)

g BT e

Equations (8), (12), and (14) provide three equations with three
unknowns p/py, Q, and V.

£ Qe
poq exp

Fumeriocel procedure

The system of equeations (8), (12), and (14) is solved by relax-
atlon methods to obteln the stream-function dietribution within the
compressor. From this distribution the velocity components and other
conditions oan be determined using equations (4), and so forth.
Detalled outlines for the mumerical procedure are given in refer-
ences 1 end 2. The procedure 1s sketoched driefly herein and an
improved technligue for satisfylng the Eutta comdition at the blede
tip is 4iscussed in detall,

Outline of edure. = In order to solve the system of equa-
tions by relaxation methods, the following procedure is followsd:

(1) BEguations (8; and (14) are changed to finite difference
form (to be disoussed).

(2) Values of ¥V are specified on the boundaries of the flow
reglon.

(3) Values of ¥ are estimated at egually spaoced points of a
grid system within the boundaries of the flow reglon.

(4) The preceding estimated values of ¥V are adjusted (relaxed)
by the relexation process until they satisfy eguation (8) in finite
difference form. ,
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(5) The boundary values of ¥ in the vaneless diffuser are
adjusted to satisfy the Kutta condition for tangency of flow leaving
the tip of the jmpeller dlade.

(8) After the Kutta condition has been satisfied, the grid
spacing ie reduced near the impeller tip 1n oxrder to obtain detalled
knowledge of the flow characteristlios in this region where conditions

are rapidly changing. :

Finite-difference equations. - Equation (8) 1s changed to the
following finite-difference form (reference 1):

(‘4"1 - ‘l’s) ( (41 95) -
——

Yy +Vg + Vg + Yy - & - 1089.0-0--108953

-(-W—‘-ilu-?l(loge -2% - logy g—i—) - %‘(\h - Vg) -
e e f] st o
where
b grid specing (fig. 3)
& residual (error) due to estimeted values of ¥V used
during relaxation solution
Subsoripts:

l, 2, 3, and 4 quantities at adjacent grid points as defined in
fignre 3. (Quantities without mumerical subscripts
refer to grid poinmt at which & is being computed,)

From equation (12), the naturel logaritim of the density retlo
(required for the solution of equation (15)) is plotted as a functim
of the flow-rate ratio Qo/p, in figure 4. The flow-rete ratlo is
obtained from equation (14), which in finite-difference form becomes
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1
' 3
£qa qi.[ﬂ'l ~¥s)® + g - wz)z]_ (16)
Po 2b exp [(m+l) %J
Bo values of V. - The streem function V¥ is constent
elong the surfeces, If the value of V is arbitrerily set

equal to zero along the driving face, the value along the trelling
face 1s given by equation (5). Values of ¥ along the left bound
(fig. 5) are obtained fram the simplified snalysis of reference 1,
which assumes that the flow 1s parallel to the blade surfaces.
Values of Y along the boundaries of comstant 7 in the vaneless
diffuser are estimated by a one-dimensional analysis of the flow
(reference 1), which assumes the moment of momentum oconstant. (Note
that these boundary values of V¥ in the diffuser are only apﬁrox -
mate and must therefore be relaxed along with the values of at
interior grid points, as indicated in.reference 1.) For all values
of § in the vaneless diffuser the values of V¥ along the boundary
1 =7, are V, greater than the values of ¥ along the boundary

| = 0. The values of ¥V along the right bound of the diffuser
(fig. 5) vary linearly.

Estimated interior values of V., - Correlation eguations
developed in this report (end presented in a later section) .pro-
vide a Pirst approximetion for ¥ at grid points within the
impeller passage. The error in these estimated values of V¥ will,
in most oases, be less than £l percent of V.

Relaxation process. - The residunels £ that result from the
estimated interior values of ¥V are computed at each grid point
by equation (15). These residuals ere then reduced (relaxed) by
suiteble changes in the values of V. The detailed procedure is
glven in references 1 and 2.

Kutta oondition. - The Kntta oondltion requires that the stream-
line Ieavingtﬁsmsurfaoebetangenttotmbladetip. This
ocondition generally 1s not satisfled by the initlal relaxation
solution because for this solution the boundary values of ¥ along
the right bound in the vaneleess diffuser (fig. 5) are obtained from
the estimated variation in ¥ along the boundaries of constant 1
in the diffuser (discussed in seotion Boundary valuee of V). In
order to satisfy the Kutta dondition, the values of ¥ along the
right bound (V) must all be changed the same required amount
(whioh amount shall be indicated as 4Vy). This chenge in Vi
(that 1s, AV,) results in changes in (thet is, AV) at each
of the interior grid points. The manner in which the values of V¥
are changed by & ohange in . mst satisfy the difference equa-
tion (15). Therefore,
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vy + alg) + (N + AYp) + (Vg + Alz) + (U + abg) - (b + &) -

(W1+N-|‘1) - (‘1’3*‘6"’3) (<4} P3
(Vg + AVy) - (Vp + aky) ( Py -
Y loge -p-o- -]l B:) -

B vy + a¥y) - (Vg + ws)]-%“- £ exp [(n+2) £+ - @
(17)

where the change in density retio resulting from AV 1s considered
negligible, Subtrecting equation (15) with # equal co zero (which
oondition has been satisfied by the initial relaxation) from equa-
tion (17) results in

A\Vl-A‘us P Px
A\V1+A\|!2+AW5+A\!I4-M\II--—4-—(103‘3-5-;-1039%)-

AV, - A
_41__"’.2. (1,,3e gﬁ- - log, ‘;—i-) - ;‘% (& - aV) =2 (17a)

Each of the last three terms on the left side of equation (17a)
oconsists of the product of two quantities that approach zero as

the grid spacing b approaches zero. For the small grid spacing
used in relexation solutions, these terms are therfore of secondary
importance and may be negleoted so that

A‘I’l + A"’g + A‘I»'s + A\I{‘ -4V = B (1)

The golution of this equation determines AV at every grid point
for a specified value of AV (along the right bound of the diffuser).
The linsarity of eguation (17b) permits the solution for any specified
A\Ilr to be obtained from the solution for A‘l&. equal to unity by
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means of a single mltiplying factor, which factor 1s equal to the
specified value of AV,.. That is, AY (at any grid point) resulting
from & specified AlG 1s equal to AV, mltiplied by the value of
AV (at any grid point) resulting from a AV,. equal to unity.

The procedure for the solution of equation (17b) is exaoctly
the same as for equation (15). The boundary values of ¥V along the
blade surfaces anl along the left bound (fig. 5) are not changed
so that AV mist equal zero along these boundaries. The value of
&V along the right bound (£ig. 5) is equal to AV,, which is set
equal to unity.

The magnitude of A\llr required to satisfy the Ehtta confition
can now be determined as follows: If the flow 1s tangent to the
trailing face of the blade at the tip (Kutte conmdition), then T
equals zero at the tip, which, by equations (4b) and (10a), indi-
cates that .

(%\g)t,'l' =0

Also, by numerlcal differentiation

(%:g)'b,'r = Kb\ilt + KW + By + ¢ o .

where K's are constants that can be determined from tables (refer-
ence 3, for example), and where the subsoripts a, b, . . . inii-
cate successlive grid polnts along the line 1 extending from the
blede tip into the diffuser (fig. 5). From the preceding two egua-
tions

O’wa-b‘i'g‘V:'l'Kb"%‘l'o e

where V! signifies the adjusted values of V¥ after the Kutta
condition 1s satisfled. But,

vioy ¢ AWt

where Y is the stream function obtained by the initlal relaxation
and AVY is the change in ¥ +that results when the Kutta condition
is satisfied. But, from above
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A = by, AWt

vhere AVl 1s the change in ¥ (at eny grid point) resulting from
a unit ohange in Vp (&), = 1.0) and AV, is the mltiplying
factor, which is equal to the okange in V,. required to satisfy the
Kntte condition. Therefore, from the preceding three equations

my, - (Bl Koy + By + .« o)
i1 11
KalVy + KAl + o o «

This equation determines the change in Vi reguired to satisfy the
Kutta oondition., The changes in ¥V at all other grid points are
cbtained by miltiplying AV, by the values of A/ (at each grid
point) obtained from the sclution of equation (17b) for Ay, equal
to unity. Because the solution for Al 1s approximate, the resulting
values of ¥V mst usnally be relaxed to eliminate small residuals
computed by equation (15).

The advantege to this method of satisfying the Kntta condition -
18 that, after the solution for AV is obtained (this solution
applies to all examples with the same value of 6;), only ome
oomplete relaxation sclution need be obtalned compared with the -
three required to satisfy the Kutta condition in reference 1.

RESULTS
Seven mumerioal em:gles are gnsen:bed. One of these examplesn

has been selected as the "standard” ani in each of the remaining
exsmples one parameter is varied from the standard conditions as

gshown in the following table: -y,
Byxample | @ {Mp | m | 6 Type of flow
(deg)

Standerd |0.5{1.5{=1.0| 12 |Compressible (7 = 1.4)
1l 0.7|1.5}{=1.0} 12 |Compressible (7 = l.4
2 0.9]1.5(-1.0| 12 |Compressible (7 = 1.4
3 0.5|2,0|-2.0| 12 |Compressible (7 = 1.4)
4 0.5/1.5|-1.4| 12 |Compressidle (7 = 1.4)
5 0.5(1.5|-1.0 | 18 |Compressible (7 = 1.4) .
6 0.5|1.5|-1.0| 18 Incmaible

1147
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Thus, by oomparing the solution for the standard example with one

of the nonstanderd examples, the effeot of the change in a single
design or operating perameter upon flow conditions in the compressor
ocan be determined.

These examples are for impellers having straight blades (fig. 6).
The solutions were obtained in & region of the compressors (including
the impeller tip, see fig. 6) that was considered to be unaffected
by the inlet configuretion of the impeller and by the 4diffuser vanes;
that 1s, the diffuser vanes, if any, must be far enough removed from
the impeller not to affeoct the flow reglon being investigated. Eaoch
solution applies, within the limitations imposed by the assumption .
of two-dimensional flow, to radial- and oconloel-flow compressors
(and turbines) with various cone angles & but with the same
included passage angle 6i (reference 1).

The numeriocal results are presented in plotes of the stream-
lines, constant Mach mmber lines, and oonstant pressure-retio
lines.

Streamlines, - The streamline omnfiguretions (relative to the
impeller) for the seven examples are shuwn in figure 7. The stream-
lines are designated in such & mamner (V/Aly) that the value of a
gstreamline indicates the precembage of the total flow (in the passage),
wvhich lies between the streamline and the driving face of the blede.
For a glven density ratio, the streamline spaocing is indicative of
the veloolitles relative to the impeller, with close spacing indi=-
oating high wvelocitles and wilde specing indloating low velocitles.

The gtreamlines for the standard exemple are glven In fig-
ure 7(a). (An extra oopy of this figure is enolosed to enasble a
direct comparison with the streamlines of the nonstenderd examples.)
For the design and operating oonditions of this example, an eddy
hes begun to farm on the driving face of the blade. This eddy
results from negative velooities on and near the blade face, The
eddy is attached to the blade and rotates with an angular velooity
equel and opposite to the rotationel velocity of the impeller.
(The motion i1s not a simple rotation but & combinetion of rotation
end deformation required to satisfy boundery oonditions.) In
ectual prectice this eddy is probably unsteble and 1t 1s desireble
to eliminate the eddy by proper changes in the design and operating
conditions of the compressor. From an inspection of figure 7, 1t
appears that the eddy oen be reduced or eliminated by inoreasing
the flow coefficient @ (figs. 7(b) end 7(o)), deoreasing the
impeller~tip Mach mmber Mp (£ig. 7(d)), deoreasing the included
passege angle 6y (fig. ¢(f)) and using incampressidble fluids
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(fig. 7(g)). The eddy in figure 7(d) (impeller~tip Mach number
of 2.0) 1s especially interesting because it occuples more than .
half of the avallable flow area at a redius ratio of 0.90.

The exponent m dJdetermines the ohange in flow area through
the Impeller and the diffuser. For m equal to -1.4 (example 4),
the flow-area ratio (flow area divided by flow area at impeller
tip) at e radius ratic of 0.5 is 1.52 compared to a ratio of 1.0 for
the standerd example (in which m equels -1 0). The effect of n
upon the streamline configuretion in the flow region investigated
is not appreciable (compare figs. 7(a) and 7(e)). The reason for
this amall effect is that the flow areas at the impeller tip are
the same (beceuse ® 48 the same) and for reascnable values of
n are not muoh different anywbere in the flow reglon investigated
(which 1s in the vicinity of the tip, fig. 8). If the area ratio
1.32 had been obtained by meintaining equal flow areas for doth
impellers at the redius ratio 0.5 within the impellers and decreasing
the area at the impeller tip in opne oase, then the streamline oon-
figuration wonld be greatly affected. But this effect would not de
the result of the change in m but rather the obange in ® (whioch
results from the change in ap).

The large effect of compressibility upon the streamline com- a
figuration (an therefore upon the other flow conditions) is shown
by a comparison of figures 7(f) and 7(g). The large eddy that
exists for compressible flow ocompletely disappears for incom- -
pressible flow. It 1s apparent that inocompressible-flow solutions
give a poor qualitative (or quantitative) picture of the flow
urnder these design and operating conditions.

Mach mumber lines. - Lines of constant Maoh mmber relative
to the impeller are shown for the seven examples in figure 8.
It should be noted that the Mach mumber in the inocmpressible solu-
tion (fig. 8(g)) is a fiotitious quantity that is equal to the
fluid velooity q d4ivided by a constant that 18 equal to the inlet
stagnation speed of sound oy -of vhatever compresaible solution
with which the incompressible solution is being compared. This
inlet stagnation speed of sound is also contained in the defini-
tions of ¥ eand Mp, so that for the incompressible solution
a/0,y @, and My vary inversely with the assigned value of o,
but ratios of these parameters are unaffected. The staniard
example is given in figure 8(a). (An extra copy of this figure
18 enclosed to enable a direct comparison with the nonstendard
examples.) The general oharacteristiocs of these plots are similar.
The velocities (as indiocated by the Mach mmber lines) 2long the
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driving face of the blade are low; the velooitles along the trailing
face are high; and the velooitles become equal on both the driving
and trailing faces at the blads tip (as required by the EKntta condi-
tiocn). The maximum Mach number cocurs on ths treiling face of the
blade at a radius ratio well within the impeller and the flow decel-~
erates along the face of the blade from this point to the blade tip.
This deceleration, whioch, for impellers with straeight blades and
with the usual type of area variation wlth redius ratio, beoomes
repid near the blade tip, is conduoive to boundary-layer separation,
vhich lovers the compressor effiolency.

If boundery~-layer effects are neglected, the velocitles at the
impeller tip are reascnably uniform and any nommniformity becomes
negligible at a radius ratio of approximately 1.10 for 6; equal to 12°
(figs. 8(a) to 8(e)) and a radius ratvio of approximately 1.15 for
6y equal to 18° (figs. 8(f) and 8(g)). These redius retios amd
their oorresponding angles are equivalent to a ratio of E/ng
approximately equal to 0.45. Flow conditions in the vaneless por-
tion of the diffuser immediately following the impeller, therefore,
become essentially uniform at & ratio of £/n; approximetely equal
to 0.45. The average relative Mach mumber at the impeller tip is
low (even for large values of @) becsuse of the high impeller-tip
Mach numbers, which result in high fluld densities anmd therefore
low veloolities.

From an inspection of figures 8(a) to 8(g), it sppears that
the maximum Mech mumber (on the tralling face of the blade) is
inoreased by increasing the flow coeffioient ¢ (figs. 8(b) and
8(o)), 1s epparently not muach affected by incressing the impeller-
tip Mach mumber My (fig. 8(4)) or by changing the exponent m
(£ig. 8(e)), and is increased by inoreasing the included passege
angle O (fig. 8(f)) or by ohanging o en inocapressible flnid
(fig. 8(g)), (in whioh the Mach mumber is & figtitious quentity
as previcusly indiocated).

Lines of oconstant veloolity retlio are shown in figure 9 for
example 5. The velooity retio is the looal velooity divided by
the speed of scund at absolute inlet stegnation comditions (a
constant), which 1s in comtrast to the relative Mach mmber (fig. 8),
whioh is the local velooity divided by the looal speed of sound
(e funotion of R and 6). TFigure 9 has been added to show that
the plots of Mach mmber and velooity retio have the same general
cherecteristios (compare figs. 8(f) and 9) so thet valid oonolusions
regarding the qualitative behavior of the velocities can be drawn
from plots of the Mach number.,
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Pregsure-ratio lines., - Lines of constant static-pressure ratilo

(1ocal pressure divided by ebsolute inlet stagnation pressure) are '
shown for the seven eg8 in figure 10. The standard example 1is

glven in figure 10(a). (An extra copy of this figure is enclosed
to emable a direct camparison with the nonstandard examples.) The
general characteristics of these plots are the .same. At a given
redius ratio, the pressure ratio is higher on the driving face of
the blade than on the tralling face except at the blade tip where
the pressure ratios are equal. This difference in pressure ratio
accounts for the impeller torque.

Slip factor. = The impeller slip factor is defined as the ratlo
of the average absclute tangential velocity of the fluid leaving the
impeller tip to the tip speed of the impeller. The slip factor has
been ocomputed for each of the seven examples by methods given in
reference 1. The resulting slip factors are given in the following
table:

Example |Nonstanderd| S8lip
parameter |factor
Standarl | mecmennee==| 0,934
¢ n 0.7 0957 .
¢ = 0.9 .958
HI = 2.0 .955
= "104 0954 M
6y = 18° | .899
p/og = 1.0*| .892

86, = 18° also.

aibnN e

It appears that the only varlable investligated that affects the com-
puted slip factor is_the included passage angle 64. In partioular,
1t will be noted that the slip factor is approximately the same for
ocompressible and incompreseible flow (compare examples 5 and 6)
although the streamline configurations for the two examples are very
different (compare figs. 7(f) and 7(g)).

The following ocomments can be made concerning the dependence of
the slip fector on 6; only: The mean absolute tangential velocity
of the fluid leaving the impeller tip (which determines the slip
factor) is mede up of two perts - that induced by the vortex repre-
senting the motion of the Impeller, and that Induced by the vortex
distribution along the blades neocessary to satisfy the Kiutta condi-
tion. It is this second part that causes the slip factor to deviate .
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from unity. But this seocond part is assoclated with the adjustment
in '¢'r (that is, A\Ilr) required to satisfy the RKutta condition and
this adjustment has been found to be independent of ¢, Mp, and
compressibility end dependent on 8y only. (See section on Kutta
condition.) Henoce, it is not surprising that the slip factor is
dependent on 6 only.

CORRELATION OF RESULTS

Correlation equations are presented wheredy the flow conditions
(U, v, YAy, and so forth) within any impeller with straight blades
can be determined (for the flow reglon investigated herein, see
fig. 6) from the flow conditions for the standard solution of this
report. These correlation egquations are developed in appendix B
and the flow conditions for the standard solution are given in
tables I, IT, and ITT.

The correletion equations are developed in terms of transformed
ooordinate ratios (£/ny. and n/ny). The dimensionless conical
coordinates R and O are related to these transformed coordinate
retios by

- j—
R exp <9t > (33)
and
= l
e e| (B4)

Stream-funotion ratio, YAy. - The stream-funotion ratio

YA, “vexrles mcross the impeller pessage from O along the driving
face of one blaje to 1.0 along the trailing face of the next blade.
At any given point (£/ny and 1n/ng) within the impeller, the value
of the stream-function ratio for any impeller (with straight blades)
and for any operating condition cen be estimated dy the following
oorrelation equation (appendix B):

1

= ﬂ— +

LA R

¥ U
A @) 2@ Fpred - e

(B1s)
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where the prime indicates estimated value of flow condition (stream-
funotion ratio in this cage) at a given yoint (8 /ng, n/n,) and the
subsoript s indiocates standard value of flow ocondition at the same
point. Also,

o My
A Wrt, (B2)

= — (B9)

and, if the absolute whirl ahead of the impeller is zero,

A
7-1

2
% -
S RE Lo (55’:.: * =
©

(o]

where the subsoript m md.io.ates the nean value at a glven radius
ratio R (thet is, at a given value of £/v;).

The estimated values of the stream-funotion retio VY'Aly, obtained
from the correlation equation (Bl6) are compared in figure 1l with
the relaxation values of V/l4 obtained for the numerical examples
of this report. Values are plotted for every other grid point across
the passage at values of [/n indicated by the symbols. Perfeot
correlation corresponds to the 45° 1ine on this plot. The error is,
with very few exceptions, less than 0.0l, where the error 1s

e (-8)

The negative velues of V/V; showm on the ocorrelation plot
correspond to eddies, which were shown in the previous section to form
on the driving face of the blade at low flow rates and at high tip
speeds, The strean-funotion reatio is always zero at the driving
face of the blade and always 1.0 at the trailing face.
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Radial-velooity ratio V. - The redial-velocity ratio ocan be
estimated by the raﬁm correlation equation (appendix B):

V' o= Vg o+ A(VTy), + A ‘-z (711') - 1] %’_ [91-. - (91-.),] + (R-B,)(l?(ret‘)-

(B13)

The estimated values of the redisl-velocity ratio V' obtailned
from equation (B13) are compared in figure 12 with the valunes of V
obtained from the relaxation solutione of this report. Values are
plotted for every other grid point eoross the passage at the velues
of ¢/n, indicated by the symbols. Perfeot correlation oorre-
sponds to the 45° line on this plot. The exror is less than 0.0l
vhere the error is defined as

Error = (V' = V) (19)

The negative values of V shown in the correlation plot corre-
spond to the eddies that form on the driving face of the blade at
lovw flow retes and at high tip speeds.

Tangential-velooity ratio U. - The relative tangential~veloolty
retio oan be estimated by the following correlation equation
(appendix B): .

U' = mg (Bl)

The estimated valunes of the relative tangential-veloolty ratio
U' obtained from equation (Bl) are compared in fignre 15 with the
velues of U obtained from the relaxetion solutions of this report.
Values are plotted for every grid point across the first half of the
passage for the values of £/ny indicated by the symbols. Perfect
correlation corresponds to the 45° 1ine on this plot. Except for
the insampressible solution (example 6), the error is less than 0.0l
where the error 1s defined as

Error = (U' - U) (20)

The relative tangential-veloocity ratio is always zero along the bdlade
surfaces.
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Other flow comditions. = Other flow conditions within the
r can be determined from the values of U and V obtalned
by the correlation equations (Bl) amd (B1l3). The relative veloolty
ratio Q is given by

LYTT

€ =% 4+ V2 (13)

From the steady-flow energy equation the temperature ratio is
given by (reference 1)

% =1+ 2%‘1- [(mr)a - QZ] (21)

vhere T 1is the absclute static temperature of the gas and where
the abgolute whirl ahead of the impeller is assumed zero.

The denéity ratio and the pressure ratio are obtained from the
temperature ratio by

1 1

@ p ol e
= T '7-'% -1 [ 2 ;‘Ll' |
2-(g) - {1 + 5= | (mag)? - az]} (22)

The loocal relative Mach number is related to Q and the temper-
ature ratio by

M= 3— (23)

,Ji
To

Correlation of velooities al blade surfaces., - Of special
interest, because of Found.a.ry-ﬁ?r oonsideretions, are the velocity

distritutions elong the trailing and driving faces of the impeller

blades, Q; anmd Qy. Estimated velues of Q obtained from the

correlation equations are given by the ocurves in figure 14 for each

of the mumeriocal examples in this report. The values of Q; obtained

by the relaxation solution are shown by the plotted points. The .
agreement is seen to be excellent in all cases.
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Estimated values of Qg obtained from the correlation equations
ere given by the ourves in figure 15 for each of the numerical
examples in this report. The values of Q3 obtained by the relax-
tion soclution are shown by the plotted points. Again the agreement
1s excellent.

Slip factor. - The Impeller glip factor p 1s defined as the
ratio of the absolute tangentlial veloclity of the fluid leaving the
impeller tip to the tip speed of the impeller. The following corre-
lation equation 1s developed in appendix C for the slip faoctor of
impellers with stralght blades:

2]
B =1 () (c2)
8

For the standard solution, 6; 1s 0.20S5 readlans and pg 1is 0.954
so that the slip factor equation becomes

p' = 1 = 0,315 6y (24)

This equation is plotted in figure 16 together with Stoldola's equa-
tion, vhich for straight blades is given by

p=l-0,500 6 (25)

The slip factors obtained for the mumerical examples of this
report are plotted as points in figure 16. These points indiocate
that the slip fector is independent of flow rete @, impeller-tlp
speed My, and variation of flow area with radius m and depends
only on the included passage angle 6. This oonclusion is in
agreement with Stodola's equation although the magnitude of the
slip factor given by Stodola 1s lower.

APPLICATIOR OF CORRELATION EQUATIONS

The correlation egquations presented in the previous section
ere importent because they provide rapld solutions (in the regions
investigated herein, fig. 6) to the differential eguation, which
determines the flow conditions (U, V, p/po, and so forth) in any
impeller (with straight blades) for all operating oonditions. An
importent application of the correlation equations 1s the deter-
mination of velocitles along the flow surfaces because these
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velooities are significant in the study of the boundary layer. As

examples of the information provided by the correlation equations '
for suoch a study, the velooltlies along the blade surfaces have been

computed over a wide range of impeller-tip Mach mumber Mp, flow

oceffioient ¢, and included passage angle 64. These computations

are presented In figures 17 to 19,

Impeller-tip Mach mmiber Mp. - The effect of Mp upon the

velocitles aiong the driving and trailing faces of a blade is showm
in figure 17. In this figure all design and operating conditions
(other than Mp) were maintained constant at the standard values.

For Mp equal to zero the velooitles are equal on both faces
of the blade. For all other values of Mp the relative velocities
ere higher on the treilling face than on the driving face and as the
impeller-~tip speed increases the difference in velooltles along the
two faces increases. BExcept near the tip, this inorease in veloc-
ity difference results primarily from a deoresse in velocity along
the driving face, and for high values of Mp this velocity becomes
negative, which indicates the presence of an eddy. The small effeot
of Mp upon Q; results from a comblnation of effeots. At higher
values of My, the difference between Q; and the mean radiail-
velooity retio V, 1Iinoreases but Vy itself decreases because of
the inoreagsed density and the net result is only a small ohange in
Q; with changes in Mp. At the blade tip the velocity becomes
equal on both surfaces, and this velooclity d.eorea.ses with inoreasing
Mp because of the higher gas density.

Flow ocoefficient E. = The effect of flow coefficient ¢ upon
the velocitles along "driving and trelling faces of & blade 1s
shown in figure 18. In this figure, all design and opereting condi-
tions (other than the flow coefficient) were maintained oconstant at

the staniard values.

At each redius ratlio the difference between Qp and is
injependent of ¢ (that is, remains comstant). The mean -
veloolty retic Vy, however, deocreases with decreasing flow coeffi-
cient, and for low flow cocefficients Q3 becomes negative, which
indicates the presence of an eddy. At the blade tip, the weloolty
becomes equal on both surfeces and this velooclty Inoreages with
inoreasing flow coeffiolent because of the increased mean ryadial
velocity V.
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For o equal to zero the velocities are equal on both surfaces
of the blade (but opposite in sign). As & result the pressures on
both blade surfaces are equal and no work is done by the impeller,
The entire flow within the passage is an eddy.

Pasng ggrle 63, = The effect of inoluded passage angle upon
the velooities along the driving and trailing faces of a blade is
shovn in figure 19, - In this figure all design and operating condi-

tions (other then the pessage angle) were maintained oonstent at
the standard vealues. Inoreased values of 64 indicate fewer blades.

The correlation equation (B13) used to obtein the ourves plotted
in figure 19 1s Geveloped in terms of a dimensionless transformed
coordinate §/n, which is related to the raiius ratio R by an
expression (equation (B3)) that includes the passage angle 6. The
minimm velne of £/n; for which standaxd values of U, V, end
so forth are given in tebles I, II, and ITI is -1.7030, whioh for
velues of 6; less than stendard (94 = 12°) corresponds to values
of R greater than 0.7, as indicsted by equation (B3) and shown
in figure 19. However, for values of R less than those resulting
from E/ny equal to =1.7030 the simplified analysis presented in
Yeference 1 for impellers with streight blades may be used to
extrapolate the curves to all lesser valuese of R. In terms of
the mean veloocity retio Vy (equation (BS)), the simplified
equation for the velocity retio becomes (Note that the simplified
enalysis of reference 1 assumes U = 0,)

q-v-vm+mret[z(§%) -1]_ (28)

Equetion (26) has been used to extrepolate the ourves for 6, less
then 12° in figure 19 (dashed lines). For values of t/n; less
then -1.7030, the simplified analysis given in reference 1 can be
used to determine the flow conditions (V, p/p,, and so forth) within
the Impeller passage for any design and opereting conditiomn. For
velues of E/ny greater then -1.7030, the methods of this report
mist be used to determine V, p/po, and so forth.

FPor 6y equal to zero the wveloocities are the same on doth
surfeces of the blede and are equal to the mean velooity Yo
(dashed line). This mean velooity is the same for all valuves of
64, but the difference between V, and Q3 inoreases with
increasing values of 64 8o that, for large values of 8, Qg
becomes negative whioh indicates the presence of an eddy.
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SUMMARY OF RESULTS AND CONCLUSIONS

8ix numerical examples are presented for steady, two-dimemsional,
compressible, nonviscous flow in centrifugal compressors with straight
blades, the center lines of whioh generate a right oircular come when
rotated ebout the axis of the ocompressor. A seventh example is pre-~
sented for inoompressible flow. The solutions were obtained in a
region of the compressors (inoluding the impeller tip) thet was oon-
sldered to be unaffected by the inlet configuration of the impeller
and by the diffuser venes. (That is, the impeller inlet and the
diffuser vanes, if any, must be far enough removed from the region
investigated not to affect the flow appreciably in that region.)
The effeots of variations in the following paremeters were investi-
gated: (1; flow coeffiolent (flow rete), (2) impeller-tip Mach
number, (3) exponent for the varietion of passege height retio with
redius ratio, and (4) the included passage angle. Each solution
applies to radial- and oonical-flow compressors (and turbines with
the rotation and flow direction reversed) with various oone angles
but with the seme included passage angle. The numeriocal results
ere presented in plotes of the streamlines, constent Mach number
lines, and constant pressure-retio lines.

Correlation equations ere developed whereby the flow conditions
(streamlines, velocities, pressures, impeller slip factor, and so
forth) within any jmpeller with straight blades can be determined
(for the flow region investigated) from the flow conmditions of the
standard solution presented. As examples of the informetion pro-
vided by the oorrelation equations, the veloocities along the blade
surfaces have been computed (and plotted) over a wide range of
impeller-tip Meoh mmber, flow coefficlent, and included pessage

angle.,

The principle ocnclusions resulting from the work presented
berein are:

l. The exponent m, which was used in this analysis to specify
the variation in flow area with redius ratio, has only a small
effect (for practical values of m) upon the area variation in the
flow region inveatigated and therefore has only a small effect upon
the flow in this region.

2. An eddy forma on the driving face of the blade at high
impeller-tip Mach numbers, low flow coefficlents, and large inoluded
passage angles. For an impsller-tip Mach mumber of 2.0 (and the
gtendaxd values of flow coefficient and included passage angle),
the eddy oocupies more than SO perocent of the flow area at a radius
ratio of 0.90.
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5. Compressibility has a great effect upon the streamline con-
figuration within the ocmpressor (and therefore upon the other flow
oconditions). For exsmple, the large eddy that exists in the
compressible-flow example (with the seme paremeters as the inoom-
pressible example) oompletely disappears in the inocompresaivle
example,

4. The maximm relative Mach nunmber occurs on the trailing face
of the blade at a redius ratio well within the impeller and the
flow decelerates along the face of the blade from this point to the
blede tip. This deceleration, whioh, for impellers with straight
blades and with the usual type of area verlation with radiuve ratio,
becomes repld neer the blade tip, is conducive to boundary-layer
separation.

5. If boundary-layer effects are neglected, the flow condi-
tioms in the veaneless diffuser following the impeller become
essentially uniform at & coordinate retio of ¢/n; approximately
equel to 0.45.

6. For the high impeller~tip Mach mumbers investigated (and
if boundary-layer effects are neglected), the velocities at the
impeller tip are low, because the high impeller~tip Mach numbers
result in high finid densities.

7. The maximum relative Mach mumber (on the treiling face of
the bdlade) is inoreased by inoreasing the flow coefficient or the
included passege angle (mumber of bledes) but is affected 1little
by the impeller-tip Mach number.

8. The impeller alip fector i1s independent of the impeller-
+1p Mach mumber, ccmpressor flow coefficlent, variation in flow
aree with radius ratio, and ocompressibility of the fluid. The
slip faoctor is a funoction of the inocluded passege angle only.

9. The difference between wvelocitles on the trailing and
driving feces of the blades Inoresses with inoreasing tip Mach
nunber and inoluded passage angle but is 1nd.ependent of the flow
oocefflolent.

Lewls Flight Propulsion Laboretory,
National Advisory Cammittee for Aeronsutiocs,
Cleveland, Ohlo, June 21, 1948.
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APPERDIX A
The follmri:g symbols are used in this report:
A retio, Wu?;-‘)’:
flow area, normal to oconic surface
munber of passeges (or blades)
grid syaoing (fig. 3)
local aspeed of sound
exponential, [exp(x) = %]
passage-height retio, h/hp
passage height, normal to oonlo surface

local Mach number a
wrp sin

%

&Sb‘lﬂﬁodun

impeller~tip Mach mmber,

passage-height exponent

absolute static pressure
relative veloclty ratlo, E + Ve
relative veloolty

conic-radius retio, r/np

QW e ©owWwE

residual
conio redius (distance along conic element from apex of oone)

L ]

]

absolute statio temperature

relative tangential-velocity retio, u/e,

d

relative tangential velocity

<

radial -velooity ratio, v/o,
v redisl velooity, along oonlic element
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W total oompressor flow rate

a oorn;e angle (fig. 1)

7 ratio of specifio heats

A small ohange

1 transformed coordinate, @6

) angle, radians unless otherwise specified

n  impeller slip factor

£ trensformed coordinate, © log, R

p welght density of fluid

P ' conpressor flow cocefficlent, po"‘:'.‘"o

¥V  ocmpressible stream function

W impeller angular veloocity

Subsoripts:

d  dariving face of blade (blade surface in direction of rotation)
n nmeen value at given radius ratio

o absolute inlet stegnation ocomdition

r right bound (fig. 5)

8 stanjard solution

T impeller tip

t  treiling face of blade (blade surface opposed to direction of

rotation)

1, 2, 3, and 4 grid points adjacent to point deing considered (fig. 3)
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Buperscripts:
' estimated value
V¥l adjusted value of V after Kitta oomdition is satisfied

A obange in ¥ resulting from AV, required to satisfy Kutta
condition

a1 ohange in ¥ resulting from AV, equal to unity
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APPENDIX B
CORRELATTON EQUATIONS

Correlation equations are developed whereby the flow condi-
tions (U, V, and VAy) within any impeller with straight blades
can be determined from the flow conditions for the standard solu-
tion of this report.

Tangential-Velocity Ratio U

A plot of U against 1n/n. (equal to 6/8;, see eguation (10b))
at t/m, equal to O for var:laus design and opera.ting oonditions
(used in the relaxation solutions of this report) is shown in
Pignre 20. These ocurves are represen‘be.tive examples ‘of the varia-
tion in U for all values of at vhich U 1is significant.
For a given value of §/n and ::7 the tangential velocity
raetio U 1is seen to be a :l’uno'bion the impeller-tip Maoch nmum-
ber and the inoluded pessage angle 6O; omnly. The tengential-
velooity retio 1s independent of the oompressor flow rete (flow
coefficient, ) and the variation of flow area with R (passage-
height exponent, m). This dependence of U upon Mp and 6

only (for a given value of §/§: and n/nhmsfaund.'boe:d.s
at a:l_'l. radius ratios at wvhich U 1s signi
be a direoct relation such that

cant and wvas found to

U = Riipby

vhere K 1s a funotion (of ¢/n; amd n/qg) vhioh is oonsteant for
2ll design and opereting conditions. ore, in terms of the
standard solution '

U' = AU, (1)
where
Bpby
A= T‘Ea;’: (82)

end where the subsoript s refers to values from the standard
example and the prime indicates the estimated value for the non-
gtandard example, EBEguation (Bl) is the ocorrelation equation for
the relative tangential-veloolty ratio.
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The correlation equation (Bl) and the other correlation equations
 to be developed in this a 1x refer to the same transformed coordi-
nate retios §/n, and 7/n. for both the stendard and nonstandard
quantities in the equations. From equations (10a) and (10b), these
trensformed coordinate ratios are related to the coordinate ratios

in the physical (R, 6) plane by

oo s ) =
and
= 0, -k
6 = 6; ol (B4)

Radial-Veloolty Ratio ¥
The correlation equation for the redial-velocity retio 1is

cbtained from the equation for irrotational absolute motion of a
fluid particle. From reference 1,

=2orp sin%n%+%-%%g-

vhioh, after dividing by o, and multiplying by 63, beocomes

o

-znl.et-(%ap%)et-%a (25)

)

Plote of V against 1/n, for various design end opereting
oonditions and for ratios of ¢/n, equal to O and -1.0 are shown
in figure 21. These plote are representative of the variation in
V at ell values of {/ny within the impeller. The slopes of the

veloolty profiles wav-n—b)- are seen to be nearly constent (except

in the immediate vicinity of the blade tip) so that from equa=-
tion (B5)

7k

(‘ﬁ’ . %) -? (-Tft- only) (B6)

1147
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and equation (B5) can be integreted to give

V = Vg + 2RO, (;eb-) + RO, (% + g)(%) (37)

vhere V equals V3 and 7/n; equals zero along the driving face
of the blade.

The velocity ratlc V3 oan be evaluated from the oondition
TaT, |
when ' > (B8)
l = 0,5

T

~.

where Vy 18 the meen radiel-velooity ratio, which is cbtained from
contimity considerations as follows:

W-bmvmrhset

or
v
Poep o5 ' P o B
fio that
vm.._.@_- (B9)

P

-—-m

Po

The mean density ratio py/p, in eguation (B9) is obtained from
equation (12) by assuming that for etraight blales the relative tan-
gentisl veloolty is zero and the redial-velooity ratio is equal to
the mean radial-velooity ratio T,

2

¥, ™
—m
Po
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Equation (12) becomes

P 1 2 dikhs

- R

Po
Equation (B10) gives an averege value of the density ratio, whioch is
agsumed to be a funotion of g/q.b (that is, R) and independent of
o/, (thet s, 6/6;).

From equation (B7) and the ocondition given by equations (B8),
the velooity ratioc V3 beoomes

RO
Vd"’m'mret"éi@*%)

and equation (B6) becomes

rere e [o (2) 3] B B)[2 () o] e

From equation (B3),

) xw &/w) 1 »
R " AE/mg)  a® - RO o(E/ng)

and from equation (Bl),

X
& 3)- (o0, + sri) 2
go that equation (Bll) dbecomes
U
evema p ()24 (om sl )

which 1s solved for ,/(t/ny)
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g - V=~V _zmret_eu
B @

The term OU,/d(f/n) can be eliminated by equating it for the
staniard end nonstendard cases. Therefore,

Vo=V, 4 A(‘V’-Vm)s +A [z (%) - q{%s- [et - (et)s] + (B-Rg) (Mr%);}

(B13)

Equation (B13) is the oorrelation equation for the redial-velooity
ratio.

Stream-Function Ratio WAl

The gtream-funoction ratic is obtained from the definltion of
the stream funotion and from the correlation equation for the redial-
velocity ratio V. The definition of the stream function 1s given
by equation (4a).

N =
m...pEO.\nsust (4e)

which, after being maultiplied by 91: and combined with equation (Bll),
beoomes

(B14)

From the condition given by equation (B6) and 1f the density retio
18 replaced by its mean velue for E/n,, equation (Bl4) can be
integrated to give
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b-tfemen [ 268

vhere ¥y 1s glven by equation (5) and VA, 1s equal to zero
when n/%( is equal to zero. Introducing eq;uation (812) and solving

for X ¢/n.) glve
T U Rsd (R L
E/mg) = %.(.n. _ 1)_11. " %%
T, Mg

The term aus/a(g/%) can be eliminated by equating it for the
standard and nonstendard cases. Therefore,

| v-’:q"n a : %)]’ (- {Ezg [or-te) + (n-n,ﬂm).})

(B16)

Bquation (B16) is the correlation equation for the stream-function
ratio.
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APPENDIX C
CORRELATION EQUATION FOR IMPELLER SLIP FACTOR
The impeller slip feotor is defined as the ratio of the aver-
age absolute tangential velocity of the fluld leaving the impeller

tip to the tip speed of the impeller. This definition results in
the following equation (reference 1):

|J.-l+% (c1)

Also, from eguations (Bl) and (B2)
(%) o
Wy "\ By

wvhich, from equation (Cl), becomes

Oy
p'=l = (pg-1) (Ve
8

6
t
p' =1 - (1 ~-py) : c2)
“a) o) (
Equation (C2) 1s the correlation equation for the slip factor.
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TABLE I - STREAM-FUNCTION RATIO Wt FOR STANDARD SOLUTION
[Conditions for stanimd exemple: (¢)g = 0.5; (l(‘l.)s = 1.5; (m), = -1.0;
(at)’ = 0.20944 redians; (7), = 1.4]

- " /oy (equals 6/6,)
w, | B ™ folo.x 0.2 [0.3 0.4 [0.5]0.6[0.7 0.8 ]0.8] 1.0

0.5168]|0.70 | =1.7050 |0|0.040 |0.095|0,165]0.244 |0.541 | 0.45L 0,570 |0. 702 [0.848]1,000
294! .75]-1.3736|0| .031| .078| 143 .220| .3168| .427| 549 .686| .840{1.000
.2735| .60|-1.06854]0] .,022) .08l .120) .197| .291} .401] .529| .671| .831/1.000
.2536| .85|- .7760[|0] .014| .O47| .201| .177| .270| .3583) 509 .655| .824|1.000
.2348| .90}~ ,5031)0| 011} .042] .097| .171] .265} .377| .503] .650| .818)1.000
«2275| .92 |- ,5981[0] Q12| 048] .lO2| .177| .270]| .582]| .506| .651| .816|1.000
.2202| .94~ .2954J0| .16] .054; .113| .189| .283! .392| .517| .660) .820(1.000
»2155| .98 |- 1949]0] .025| .089] 132} 212} .305| .415| .636| .675| .828(1.000
.2100| .97]=- J1454)0| .029]| ,080) .146| .228] .52)]| .429| .S50| .684| .832(1.000
.2067 098 - .0965 o] 1058 0095 -165 .247 05‘1 0“7 .568 .697 0859 lom
«2054( .99)- ,0480]J0] 048] .111] .185; .270| .568| .472]| .586| 713 | .850{1.000
»20021.00| 0 0| .082) .135] .210| 297 .395] .499| .611] .754| .868(1.000

TABLE IT - RADIAL-VELOCITY RATIO V FOR STANDARD SOLUTION

[Conditions for staniamd example: (P)g = 0.5; (ip), = 1.5; (m)g = -1.0;
(¢a1.,)‘l = 0.20944 radiang; (7), = l.4]

W1y (equals 6/6,)
(), |Be | &/m [0 To3 702 05 0.4 05 0.8 0.7 0.6 0.5 10
0.5168 |0.70|-1.7050]0.105 |0.1480.190 [0.254 [0.278|0.523 |0.568 |0.412 |0.456 [0.501 | 0,549
2041| .75(|-1.5738| .085( .112| .159| .208| .258( .00 .548| .396| .445| .492] .545
.2735| .80|-1.0856| .033| .082| .132| .181| .250| .280| .329| .578} .428| .479] .533
.2536 .85(- .7760| .008| .059| .110{ .160| .210| .259| .508| .357| .408| .480| .51S
.2548| .90|~ .5081|-.001] .048| .099| .148| .194| .239| .285] .330| .578| .4%0| .483
2275| .92(-~ .3981| .002| .05 .100| (246 .189| .2m| .273| .316| .363| .425| .463
2202 | .94|- .2954f .010| .0s8| .108| .148| .188| .224| .261| .299| .542| .390| 458
2133| .96/~ 1949 .025| (072 .115| 15| .184| .216| .248| .280( .m16| .360| .407
.2100 .97 - .1‘5‘ .057 .o& .122 .155 -la‘ .215 .2“. .270 -50]. -5‘2 -538
.2087| .98(- .0985| .055| .095| .131| .158( .184| .209| .234| .259| .2e6| .321| .362
.2054| 99|~ .0480) .0s1| .115| .139| .1e1| .284| .205| .227| .248| .271| .283| .:18
.2002 [1.00| O 99| .1m| 48| .188| .184| .202| .220| .238| .254| .271| .199

LYIT
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TABLE IIT - RELATIVE TANGENTIAL-VELOCITY RATIO U FOR STANDARD SOLOTTION
[Conditions for steniard example: (Mp), = 1.5; (6g), = 0.20944 rediens]

n | t/m /1 (eauels 6/8,)
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |]1.0
0.70{-1.7030}0| 0,008} 0.015| 0.020| 0.025| 0.024| 0.08%5| 0.020| 0.015| 0.008} O
.75(-1.3736|0| .008} ,015| .020| .023| .024| .023( .020| .015| .008} O
.804-1,065¢10| .008] .014| .O08( ,021| .022( .O0R1( .019] .015| .008} O
185 - .77& 0 .ms .wg 0011 .012 10]-3 .0]-3 .012 .010 .ms 0
-90 - .5051 o - .002 - om‘ - amT - .mﬂ - .008 - .007 - .005 - .m - .00]. 0
'92 - -59& 0 - .w? - .OJ-S - -o]-a - -021 - .m - lwl - .0]-6 - .o]l - .005 O
t% - .295‘ o - 0015 - -02‘ - 1035 - -038 - loss - .057 - 0031 - .022 - .012 0
.96 - -1949 Of= .025 - 00‘1 - 005‘ - -061 - -o - .060 - 10& - .059 - .ml 0
a97 - 01‘54 o - 0050 - .055 - -088 - .076 - -077 - 007‘ - 1086 - .050 - .ms 0
«98(~- .0985|0|- .040|~ ,067 |- .085|= 091 |~ .084|- 061 |~ .08l |- .085|=- .039| O
.99/~ ,0480|0(~ .055(~ ,083|~ ,100{- .109|- .112{- .108{- .099 |- 082 |- .052| O
- 1.00( © Q|- 072]|~ 102}~ .119|- .128|=- .151|~ .127 |= ,11B|= ,100|=- .070| O

~ma
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\ ;
. N

Figure 1. - Fluid particle on rotating coordinate system of impeller. Center line of flow
passage generates right olrcular come with cone angle a.-
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Flgure 2. - Fluld particle on developed view of conlc surface. R, O, and
H, dimensionless coordinates relativa to impeller; u and v, tangentia]
and radjal components of velocity relfative to impeller, respectively.
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Figure 3. - Sample grid showing grid spacing © and numerical

subscript convention for adjacent grid points.
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A
[ I
Traliing, face (wy = @94) gn - “t+_ + +
b =
© + + -+ + + + + €
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: ,, Ak
e =
[ [+;]
s + + + + + + + 2
- [+ 4
Driving' tace (v, = 0) n-o
: ¥ : + + + +—
impetler Diffuser
—-00 = >t —p- + Q0
- +&
0

Filgure 5. - Relaxatlon grid in transformed coordinates.
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1.20

1.10

1.08

P

R

3

B

coMc-radl us ratic,

85

a5

.10

Relative
Stream|ines

e

——

'/

e —. 5

' A .4
///%/é/ —
/// / Y|
/

//I\/-o
’.

2

iy

|

|

'°6l2 0 8 6

i

Angle, 9, deg
(a) Standard example:

4

flow coefficlent ¢, 0.5;

inpeller-tin Mach number My, i.5; constant flow
area (m, 1.0)}; Included passage angie 6., 120;

compressible flow {

7sl.4).

(An extra copy of this

flgure is enclosed to enable direct comparison with
stream!ines of nonstandard examples.)

Figure 7. - Relative streamlines for flow through
centrifugal compressor with straight biades.

Streamiine

designation Indicates percentage of flow through passage

between streamline and driving face of blade (right
slde of passage)}.

NACA TN

i932
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Ilm

1.10

1.08 / /

NN

3
I
Q\

. W
: ol
PR
8

.85

\
L

0 0o 8 6 4 2 @h .
512 Angle, 6, deg 0

flow coefficlent @, 0.7; other
paraneters same as standard examplas.

Figure 7. - Continued.

(b) Example I:

Relative streaslines for
flow through centrifugal compressor with stralght
blades.

Streamline designation Indicates percentage
of flow through passage between streamiine and

driving face of blade (right side of passagel].
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B - "””

BPZZ
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://,/
gl

15

il

12 10 8 4 2 0 @
Angle, 0, deg

(¢} Example 2: flow coafficient ¢, 0.9;
other parametars same as standard example.
Figure 7. - Continued, Relative stream!ines for

flow through centrifugal compressor with stralght
blades. Streamiine deslignation Indicates percentage
of flow through passage betwesn stream!ine and
driving face of blade (right side of passage).

Relatiye
stro.nlfne.

NACA TN

1932
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——L
1.20 :M-uv.
Stream/p
/‘Pt’ s
1.15 t.g
7
1.10 /// <] —
?/7I' a‘
/4// A 2
1.06 7 7 !

pliiinrg
T

e

0 8 6 4
12 Angle, 6, dag

|
| Iy
U
|| e

(e) Example 4: varying flow area (m, -1.4);
other paraseters same as standard axasple.

Fiqure 7, = Coatinued. Relative stream!ines for
flow through centrifugal compreasor with straight
blades. Streamiine designation Indicates percentags
of flow through passage bstween streamiine and
driving face of blade (right side of passage).



NACA TN 1932

Ralat}y,
- - i
4 o'
i 9
118 | —3
110 s B
////?g 2
ffatal
1.00
. 1A/
e
3
80 \ \
8 \ \
. T
(f) Exaeole 5:  oesenge

0 ESEE
tncluded passage angle 04, 180; other
paraseters same as standsrd example. .

Flqure 7. - Continued. Relative streamlines for
tlow throuqh centrifugal compressor with straight
blades.

Streaml|ine deslignation indicates percentage
of flow through passsge between streastine and

driving face of blade (right side of passage).
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/

1.\0

/
.08 ? /

14 12 10 8 W

g 18 Angle, 0, deg

(o) Example 6: Iincompressible fluid; other parzmeters same as example 5
(fig. 7(f)). Nots that ¢

and M7 are based upon same constant cg,
the magnitude of which is ecual to spessd of sound at Inlet conditions
of example B.)

Flgure 7. - Concluded. Relative streamiines for flow through ceatrifugal
compressor with stralght biades.

Streamiine designration indicates
percentage of flow through passage between streamline and driving face
of blade (right side of passage).
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5]
——
Relative
Mach number
.20 0. T
|
1.18 .40

X -y
o

1.00

N\ \ z;_

AL

IR
BN

-5?5" i0o 8 6 4 2

Angle, 6, dag 0 @

(a) Standard example:

©
o

B

m‘c-flﬂ‘\l‘ ratio, R

flow coefficient ¢, 0.5;
impeller-tip Mach nusber My, 1.5; constant flow

area (m, -1.0); included passage anple 8¢,
120; compreasible flowx (y, 1.4),

(An extra
copy of this figurs is enclosed to enabfe direct

comparison with constant Mach number lInes of
nonstandard examples.)

Figure B. ~ Lines of constant Mach number relative to Impeller
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— W

Relative

Mach number
1.20 0.%0
.49

1.16
1.10 .35 _\’1

.0
1.0

8

Contc-ragius ratios R

€30 8 6 4 2 0 KA~
Angle, 6, deg

(b) Example 1: flow coefficlent ¢, 0.7; other

parameters same as standard exasple.

Flgure 8, - Continued. Lines of constant Mach
nunsber relative to impeller.

NACA TN 1932

LY%TT
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——
- Relative
Mach number
0.55
1.0 =¥
\ a
1.15 .45
.40
1.10 T

.35 ’1
1.0 N —

8
p.

177

.25

J

©
)

.20

Conic-rndlus ratio, R

\\g
\

\
N

{c) Example 2: flow coefficienrt @, 0.9; other
paraseters same as stangard exasple.

“Cig 10 :

Fiqure 8. - Continued. Lines of constant Mach
nusber relative to impeller.

53
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(a) Example 3: Impeller-tip Mach nusber My, 2.0;
other parameters same as standard exasple.

Figure 8. - Continued. Lines of constant Mach number
relative to impeller.
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. w

Relative
Mach number

0,00

B

'a,___‘“———w

B

—
-«
-

Conlc-rnd\ua ratio, R
©
o
]

AN L =D
“ \\ station

AT

i2 10 8 &

4 2 0 @
Angle, @, deg

(e) Example 4: varying flow area (m, -1.4);
other parareters same as standard exasple.

Figure 8. - Continued. Lines of constant Mach number
relative to impeller.
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(f) Exaaple 5:

lncluded passage angle 84, 180; other parameters
sape as standard example.
Fioure 8. - Continued.

Lines of constant Mach number relative
to impsller.
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i
Relativa Mach number
{fictitious, ses subiegend)
1.20 0.80
\ -
119 \ .70
68 I
1.10
.60
/
1.0% =

.5 L]
/‘ .
1.00

A .45
085

Contc=radive ratios
2
o
.
=3

85 2
. .70
80
.75

15
.10
.69 18 14 12 10 8 6 4

18 Angle, '8, deq 2

(9} Example 6:

0 @
incompressible fluild; other parameters same as -
exaaple5 (fip. B(f)). (Note that ¢, and My are based upon same
constant c¢,, the magnitude of which is equal to spesd of sound at
Inlet conditions of examplie 5. For incompressible fiuids the
relative Mach number becomes fictitious and Is equal to relative
velocity a divided by constant c4.)
Flgure 8, - Concluded.

Lines of constant Mach nuaber relative to impaller.
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Relative
valocity ratio, Q
1,20 0.65
\ 60
) .50
1.8
\ 0 N
e
be "” \
.38 TT—=
1.05
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.25 )20 /}
.00 </ 2
. 1/
2 86 .36 - o
5 o
® a0 © \ \ f 08
:S’ \ .0 Stagnation
. points
8 .45 \ '
l
80 \ /
.15
J0 .80
REAN
_Gﬁle 18 14 12 0 8

4 2
Angle, 6, deg

Figure 8. - Lines of constant velocity ratlo relative to
impelier.

Example 5; flow coefficient ¢, 0.5; lmpaller-tip
Mach number My, ¢.56; constant flow area (m,~1.0); Included

passage angle 04, i9%; coapressible flow (7 1.4).
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(a) Standard example:

Angle, €, deg

fiow coefficient ¢, 0.5;

impsller-tip Mach number, My, 1.5; constant flow
area (m, -1.0); Included passage angle 64,
129; compressible flow (y, 1.4). ' (An extra
copy of this figure Is snciosed to enable direct
comparison with constant pressure-ratio lines of
nonstandard exampies.)

Figure 10. - Lines of constant static-pressure ratio.
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(b) Examplie i: flow coefficient ¢, 0.7; other
paraneters same as standard exampie. -

F Y

.ao§\~ \‘ 2.4
NS
INNNNASE

.

Flqure 10. - Continved. Lines of constant static-
pressure ratio.
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(c} Example 2: flow coefficient ¢, 0.9; other
paraneters sane as standard exasple.

Flgurs 10. -~ Continued. Lines of constant static-
- pressure ratlo.
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impeller-tip Mach number My, 2.0;
othar paraneters same as standard example.

{a) Example 3:

Flgure (0. - Continued. Lines of constant static-
pressure ratlo.
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(e) Example 4: varyinp flow area (m, -1.4); other
parametars same as standard example.

il

Conlc-radius ratio R

//
[ /]
ail

7,
/7]
/]
//%

Figure 10, - Continued. Lines of constant statlc-
pressure ratlo.
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€9g~ 16 Angle, 8, deg

2 9 @
included passage angie 04, 180;

s other parameters same as
standard example.

{f) Example 5:

Flgure 10, - Continued. Lines of constant static-pressure ratio.
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(g) Example 6:
(flg. 10(f)).

example 5.}

1932

st.t'c-pr..sur‘
fatjg, ”po

2.7

2.6

2.3

2.2

ON ]

1.6

i6 14 12

i 8 6 2
Angle, 6, deg

Figure 10. - Concluded.

0

incompressibie fluld; other parameters sare as exampie 5

(Note that ¢ and MT are based upon same constant c,,
the magnitude of which Is equal to speed of sound at inlet conditions of

Lines of constant static-pressure ratlo.
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Flgure 12. - Comparison between exact (relaxation solution) and estimates {(correlation squation {BI13)) values bf radial~

‘velocity ratlo for various vaives of R {function of

and @) and O,
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Relative velocity ratio along tralling face of blade, Q4
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Relative velecities along blade surfaces, Q4 and Q
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Flgure 17. - Effect of Impallaer~tip Mach number upon relstive velocity ratio along driving and tralling
faces of blade. Correlatlion equation {(BI3); flow coefficlent @, 0.5; constant flow ares (m, -1.0);
Included passage angle 8¢, 120; compressible flow (y. 1.4). -
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Figurs I18. - Effact of flow coafficient upon relative velocity ratlo along driving and tralling faces of blade.
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Relative velocities along blade surfaces, Qg and 0Oy
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Relative tangentlial-velocity ratio, U
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Plottad points obtained from relaxation solution.
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